ADS

Sunday, 27 May 2018

OPTICAL FLATS

OPTICAL FLATS
Optical flats in case. About 2.5 centimetres (1 in) in diameter. The third flat from the left is standing on edge, showing the thickness.
A λ/20 optical flat that has been coated with aluminum, making a first-surface mirror.
Two optical flats tested using 589 nm laser-light. At 2 inches (5.1 cm) in diameter and 0.5 inches (13 mm) thick, both surfaces are flat to within 1/10 of the wavelength of the light (58.9 nm), as indicated by the perfectly straight fringes.
An optical flat is an optical-grade piece of glass lapped and polished to be extremely flat on one or both sides, usually within a few tens of nanometres (billionths of a meter). They are used with a monochromatic light to determine the flatness (surface accuracy) of other surfaces, whether optical, metallic, ceramic, or otherwise, by interference.[1] When an optical flat is placed on another surface and illuminated, the light waves reflect off both the bottom surface of the flat and the surface it is resting on. This causes a phenomenon similar to thin-film interference. The reflected waves interfere, creating a pattern of interference fringes visible as light and dark bands. The spacing between the fringes is smaller where the gap is changing more rapidly, indicating a departure from flatness in one of the two surfaces. This is comparable to the contour lines one would find on a map. A flat surface is indicated by a pattern of straight, parallel fringes with equal spacing, while other patterns indicate uneven surfaces. Two adjacent fringes indicate a difference in elevation of one-half wavelength of the light used, so by counting the fringes, differences in elevation of the surface can be measured to better than one micrometre.
Usually only one of the two surfaces of an optical flat is made flat to the specified tolerance, and this surface is indicated by an arrow on the edge of the glass.
Optical flats are sometimes given an optical coating and used as precision mirrors or optical windows for special purposes, such as in a Fabry–Pérot interferometer or laser cavity. Optical flats have uses in spectrophotometry as well.

NOTE: ONE FRINGE = 0.32um

So number of red fringes obtained with optical flat stable on surface multiply by 0.32um.
this procedure is used without monochromatic light.

Optical parallel flat set is used to find out paralleliesm betweeen two surfaces.
Like micrometers,depth micrometers,dial calibration tester etc.


No comments:

Post a Comment